首页> 外文OA文献 >Gamma-convergence approach to variational problems in perforated domains with Fourier boundary conditions
【2h】

Gamma-convergence approach to variational problems in perforated domains with Fourier boundary conditions

机译:带有傅立叶边界条件的多孔区域中变问题的伽马收敛方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The work focuses on the Γ-convergence problem and the convergence of minimizers for a functional defined in a periodic perforated medium and combining the bulk (volume distributed) energy and the surface energy distributed on the perforation boundary. It is assumed that the mean value of surface energy at each level set of test function is equal to zero. Under natural coercivity and p-growth assumptions on the bulk energy, and the assumption that the surface energy satisfies p-growth upper bound, we show that the studied functional has a nontrivial Γ-limit and the corresponding variational problem admits homogenization.
机译:这项工作的重点是在周期性穿孔介质中定义的功能的Γ收敛问题和最小化器的收敛,并将体积(体积分布)能量和分布在穿孔边界上的表面能结合起来。假设在每个水平的测试函数集处,表面能的平均值等于零。在关于体能的自然矫顽力和p-增长假设下,以及表面能满足p-增长上限的假设下,我们证明了所研究的泛函具有非平凡的Γ极限,并且相应的变分问题允许均质化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号